Cavitation Model Calibration Using Machine Learning Assisted Workflow
نویسندگان
چکیده
منابع مشابه
Simulation assisted machine learning
Predicting how a proposed cancer treatment will affect a given tumor can be cast as a machine learning problem, but the complexity of biological systems, the number of potentially relevant genomic and clinical features, and the lack of very large scale patient data repositories make this a unique challenge. “Pure data” approaches to this problem are underpowered to detect combinatorially comple...
متن کاملCalibration of Machine Learning Models
The evaluation of machine learning models is a crucial step before their application because it is essential to assess how well a model will behave for every single case. In many real applications, not only is it important to know the “total” or the “average” error of the model, it is also important to know how this error is distributed and how well confidence or probability estimations are mad...
متن کاملMachine Learning Vasicek Model Calibration with Gaussian Processes
In this paper we calibrate the Vasicek interest rate model under the risk neutral measure by learning the model parameters using Gaussian processes for machine learning regression. The calibration is done by maximizing the likelihood of zero coupon bond log prices, using mean and covariance functions computed analytically, as well as likelihood derivatives with respect to the parameters. The ma...
متن کاملA Novel Assisted History Matching Workflow and its Application in a Full Field Reservoir Simulation Model
The significant increase in using reservoir simulation models poses significant challenges in the design and calibration of models. Moreover, conventional model calibration, history matching, is usually performed using a trial and error process of adjusting model parameters until a satisfactory match is obtained. In addition, history matching is an inverse problem, and hence it may have non-uni...
متن کاملVulnerability Extrapolation: Assisted Discovery of Vulnerabilities Using Machine Learning
Rigorous identification of vulnerabilities in program code is a key to implementing and operating secure systems. Unfortunately, only some types of vulnerabilities can be detected automatically. While techniques from software testing can accelerate the search for security flaws, in the general case discovery of vulnerabilities is a tedious process that requires significant expertise and time. I...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics
سال: 2020
ISSN: 2227-7390
DOI: 10.3390/math8122107